一些出现在我的草稿本上的奇怪的题目。
暂未整理几何题。
Problem 1
\[\begin{align}
&证明\sum_{i=0}^{n}C_{2n}^{2n-i}C_{2n-i}^{i}2^{2n-2i}=C_{4n}^{2n}.\\
&\large{咕咕咕}.
\end{align}\]
Problem 2
\[\begin{align}
&一三角形三边长为\sqrt{445},\sqrt{808},\sqrt{1017},求这个三角形的面积.\\
&\textbf{解法1:}设AB=\sqrt{808},BC=\sqrt{1417},AC=\sqrt{445}.\\
&作AB边上的高CM,垂足为M,设CM=h,AM=a.\\
&由图,使用两次勾股定理,可得h^2=\sqrt{445}^2-a^2=\sqrt{1417}^2-(a+\sqrt{808})^2\\
&解得h=\frac{297\sqrt{202}}{202}.\\
&三角形面积S=\frac{1}{2}AB\cdot h=297.\\
&\textbf{解法2:}\cos B=\frac{AB^2+BC^2-AC^2}{2AB\cdot BC}=\frac{1780}{2\sqrt{808\times 1017}}.\\
&设x=\sqrt{808\times 1017},则\cos B=\frac{1780}{2x}=\frac{890}{x}.\\
&则\sin B=\sqrt{1-\cos^2 B}=\sqrt{\frac{x^2-890^2}{x^2}}.\\
&则S=\frac{1}{2}AB\cdot BC\sin B\\
&=\frac{1}{2}\sqrt{808}\sqrt{1017}\sqrt{\frac{x^2-890^2}{x^2}}\\
&=\frac{1}{2}x\sqrt{\frac{808\times 1017-890^2}{x^2}}\\
&=\sqrt{88209}\\
&=297.\\
\\
\\
&题外话:这题出自某次南外数学提高班选拔.\\
\end{align}\]
Problem 3
\[\begin{align}
&经典题:\{a_n\}是公差为d的等差数列,\{b_n\}是公比为q的等比数列,求T_n=\sum_{i=1}^na_ib_i.\\
&\textbf{解:}T_n=a_1b_1+a_2b_2+a_3b_3+\cdots+a_nb_n\qquad\qquad(1)\\
&qT_n=a_1b_2+a_2b_3+a_3b_4+\cdots+a_nb_{n+1}\qquad\qquad(2)\\
&\therefore(1-q)T_n=a_1b_1+d(b_2+b_3+\cdots+b_n)-a_nb_{n+1}\\
&=a_1b_1+d\cdot\frac{b_2(1-q^{n-1})}{1-q}-[a_1+(n-1)d]b_1q^n.\\
&\therefore T_n=\frac{a_1b_1(1-q)+dqb_1(1-q^{n-1})-[a_1+(n-1)d]b_1q^n}{(1-q)^2}.\\
&\\
&题外话:这题约等于\text{2025}年全国卷\text{I}数列原题.\\
\end{align}\]
Problem 4
\[\begin{align}
&找到最小的正整数q,使得存在正整数p,满足\frac{p}{q}=0.2025\cdots(即[\frac{10000p}{q}]=2025)且p,q互质.\\
&\textbf{解:}\frac{81}{400}=0.2025显然,下讨论q<400情况:\\
&由题,2025<\frac{10000p}{q}<2026,即2025q<10000p<2026q.\\
&由于q<400,故[\frac{q}{5}]\times 10000<2025q<([\frac{q}{5}]+1)\times 10000,\\
&要使2025q<10000p<2026q,就要使2026q>([\frac{q}{5}]+1)\times 10000.\\
&设q=5k+r(k\in \mathbb{N},r=0,1,2,3,4)\\
&则2026(5k+r)>(k+1)\times 10000,可得k>\frac{10000-2026r}{130}\\
&引理:若a=k_1+r_1,b=k_2+r_2,k_1<k_2,则a<b.\\
&证明:k_1\le k_2-1,r_1\le 4,r_2\ge0,则a_{max}=5(k_2-1)+4,b_{min}=5k_2,易得b_{min}>a_{max}\\
&所以有a<b.\\
&由引理知,要使q最小,就要使k最小,\\
&当r=4时,k取最小值k_{min}=15,\\
&此时q_{min}=5k_{min}+r=79.\\
&综上,满足条件的最小的q为79.\\
\\
\\
&题外话:这题是南师附中\text{2025}特长生真题.\\
\end{align}\]
Problem 5
\[\begin{align}
&若\sum x_i=1,证明\sum\sqrt{x_i}\cdot\sum\frac{1}{\sqrt{x_i+1}}\le\frac{n^2}{\sqrt{n+1}}.\\
&\textbf{证明:}令s=\sum\sqrt{x_i},\\
&则s=\sum\sqrt{x_i}=\sum 1\cdot\sqrt{x_i}\le\sqrt{\sum 1^2\cdot\sum\sqrt{x_i}^2}=\sqrt{n}.\\
&令t=\sum\sqrt{x_i+1},\\
&\because\sum\frac{1}{\sqrt{x_i+1}}=\sum\frac{1+x_i-x_i}{\sqrt{x_i+1}}=\sum\sqrt{x_i+1}-\sum\frac{x_i}{\sqrt{x_i+1}}=t-\sum\frac{x_i}{\sqrt{x_i+1}}\\
&且\sum\frac{x_i}{\sqrt{x_i+1}}\cdot\sum{\sqrt{x_i+1}}\ge(\sum\sqrt{x_i})^2=s^2,\\
&\therefore\sum\frac{1}{\sqrt{x_i+1}}=t-\sum\frac{x_i}{\sqrt{x_i+1}}\le t-\frac{s^2}{\sum\sqrt{x_i+1}}=t-\frac{s^2}{t}.\\
&欲证命题化为s(t-\frac{s^2}{t})\le\frac{n^2}{\sqrt{n+1}}.\\
&又由于t=\sum\sqrt{x_i+1}=\sum 1\cdot\sqrt{x_i+1}\le \sqrt{\sum 1^2\cdot \sum(x_i+1)}=\sqrt{n(n+1)}\\
&且t-\frac{s^2}{t}是t的增函数\\
&故有s(t-\frac{s^2}{t})\le s[\sqrt{n(n+1)}-\frac{s^2}{\sqrt{n(n+1)}}]=\frac{n(n+1)s-s^3}{\sqrt{n(n+1)}}.\\
&当n=1时,原不等式显然成立;\\
&n\ge 2时,令f(s)=n(n+1)s-s^3\\
&当s\le\sqrt{n}时,f'(s)=n(n+1)-3s^2\ge n(n+1)-3n=n(n-2)\ge 0\\
&即f(s)在s\le \sqrt{n}时递增,即f(s)_{max}=f(\sqrt{n})\\
&故s(t-\frac{s^2}{t})\le\frac{n(n+1)s-s^3}{\sqrt{n(n+1)}}\le\frac{n(n+1)\sqrt{n}-(\sqrt{n}^3)}{\sqrt{n(n+1)}}=\frac{n^2}{\sqrt{n+1}}.即原命题得证.\\
\\
\\
&题外话:在单墫老师的书上看到的题目,条件很严格,证明也很富有技巧性,尤其需要对柯西不等式的熟练掌握.\\
\end{align}\]
Problem 6
\[\]